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Abstract. The recent synthesis of random schwarzites has stimulated the present ab initio calculation
of the electronic structure and electron-phonon interaction in two different periodic D-type schwarzites,
fcc-(C28)2 (made of 24 seven-membered rings per unit cell) and fcc-(C64)2 (made of 12 eight membered
and 48 six-membered rings per unit cell). Like in fullerenes, also in schwarzites the electron-phonon inter-
action potential is found to increase with the absolute Gauss curvature, though it remains smaller than
for doped fullerenes.

PACS. 71.15.Mb Density functional theory, local density approximation, gradient and other corrections –
74.70.Wz Fullerenes and related materials – 74.10.+v Occurrence, potential candidates

1 Introduction

The discovery of high superconducting transition tem-
perature in alkali-doped C60 (Tc = 10−40 K) has at-
tracted much attention on carbon-based materials as a
possible new class of superconductors [1,2]. Although the
origin of superconductivity in C60 is still controversial, it is
generally accepted that a large electron-phonon coupling
plays a crucial role in providing a high Tc. The electron-
phonon coupling is stronger in C60 with respect, for in-
stance, to graphite because of the large curvature of the
graphene structure of the cluster [3]. Smaller fullerenes
(C36, C28, C20) with a larger curvature have been pre-
dicted to have larger electron-phonon coupling [4–8]. Pos-
sible solid forms of C36 [7] and C20 [8] have been also
proposed recently. Fullerenes are one of the ways in which
curvature can be introduced into a graphitic net. An alter-
native class of structures, known as schwarzites, have been
proposed theoretically [9–12,14]. These structures have a
negative Gaussian curvature associated with the presence
of seven- or eight-membered rings, in contrast to fullerenes
which have a positive Gaussian curvature due to the pres-
ence of five-membered rings. As in fullerenes, all atoms
in schwarzites are three-fold coordinated. The recent syn-
thesis of a spongy form of carbon with the structure
of a random schwarzite [15] has stimulated the present
ab initio study of the electron-phonon interaction in peri-
odic schwarzites. Special attention is given to the depen-
dence of the electron-phonon coupling on the Gaussian
curvature and its role in their potential superconductive
properties.
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Although periodic schwarzites have not been realized
experimentally so far, there is clear evidence that ran-
dom schwarzites in the form of highly porous, nanos-
tructured carbon are produced by cluster assembling in
films deposited by pulsed microplasma cluster sources [15].
Periodic schwarzites, however, are obviously more suit-
able to be studied theoretically by ab initio methods.
We have thus confined ourselselves to study the struc-
tural, electronic and vibrational properties of two periodic
D-type schwarzites with a face-centered-cubic structure,
fcc-(C28)2 (with 56 atoms per unit cell) and fcc-(C64)2
(with 128 atoms per unit cell). The calculations have been
performed within density functional theory in the local
density approximation, with norm-conserving pseudopo-
tential and plane wave expansion of the Kohn-Sham or-
bitals up to a kinetic cutoff of 40 Ry, as implemented in
the code CPMD [16,17]. The topological properties which
have been used to build the two crystals fcc-(C28)2 and
fcc-(C64)2 are briefly reviewed in the next section. The
results on the structural, electronic, and vibrational prop-
erties and on the electron-phonon coupling are reported
below for each crystal in Sections 3 and 4.

2 Topological properties of schwarzites

Periodic schwarzites are generated by covalent connection
of identical elements. The unit cell may contain one or
more such elements. The centers of the elements can be
seen as the nodes of a dual lattice. The diamond struc-
ture is a possible dual lattice which defines an impor-
tant class of cubic schwarzites, with two elements per unit
cell (bi-elemental schwarzites), each element being 4-fold
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Fig. 1. The face-centered-cubic structure of the schwarzite fcc-(C28)2. The conventional unit cell with four formula units is
shown. The coordinates of the three independent atoms (A, B, C) are given in the text. Atom C’ (B’) is obtained from C (B)
by applying a symmetry operation.

coordinated with neighboring elements. These structures
are tessellations of a D-type Schwarz minimal surface [9].
Mono-elemental cubic schwarzites with a sc, bcc or fcc
dual lattices are also possible, though the negative curva-
ture of the elements becomes large, due to the increased
coordination (6, 8 and 12, respectively for sc, bcc, and fcc),
and energetically unfavorable. However, sc (P-type) car-
bon schwarzites of the polybenzene family have been pre-
dicted to be rather stable [12].

The topology of schwarzites can be explained starting
from the Euler’s theorem [18] for the polygonal tiling of a
surface, analogously to the treatment of fullerenes. Since
schwarzites are open, infinitely extending surfaces, Euler’s
theorem will refer to the unit cell. In D-type schwarzites
each element is linked to four identical elements and has
tetrahedral symmetry and four open terminations. Corre-
spondingly, the unit cell containing two joint elements has
six terminations. From the topological point of view it can
be closed on itself by (ideally) joining three pairs of oppo-
site terminations, this operation being equivalent to the
cyclic boundary conditions for the periodic crystal. This
closure procedure transforms the unit cell into a three-
hole torus, characterized by a connection order per unit
cell Kuc = 7 [9] or a single element into a two-hole torus
with a connection order per element Kel = 5. Thus the
polygonal tiling of a D-type surface must obey the Euler’s
law per element in the form νel−eel +fel = 3−Kel = −2,
where νel, eel and fel are the numbers of vertices (atoms),
edges (bonds) and polygonal faces (rings) per element.

The tiling with only one kind of polygons (minimal or
Platonic tiling) leads to well defined numbers of polygons.
In all cases, the polygons cannot be other than heptagons,
octagons or ennagons. Each minimal tiling is the zeroth
element of an infinite series of larger schwarzites obtained
by inserting in each element a number of hexagons. The
zeroth elements of the three series contain, respectively,
12 heptagons, 6 octagons and 4 ennagons per element.
The corresponding smallest D-type schwarzites will there-
fore have 56, 32 and 24 atoms per unit cell. The number

of hexagons that can be added to obtain larger D-type
schwarzites is not arbitrary, but fixed by the request that
the tetrahedral symmetry is preserved.

In this work we consider two D-type schwarzites.
Firstly, the smallest schwarzite of the heptagonal class,
fcc-(C28)2 which is the counterpart of the fullerene C20

and will allow us to compare the main properties of these
two systems as representative of two different families.
In fcc-(C28)2 the elemental unit contains 28 atoms and
occupies the sites of the diamond lattice (56 atoms per
unit cell). Then we have considered a larger schwarzite
of the octagonal class with 24 hexagons and 6 octagons
(64 atoms) per unit element (fcc-(C64)2).

3 The schwarzite fcc-(C28)2

3.1 Structural and electronic properties

The crystal fcc-(C28)2 is the smallest schwarzite of the
heptagonal class (Fig. 1). It has a tetrahedral symmetry
and can be seen as formed by C28 units in the sites of
a diamond lattice. Each C28 unit contain 12 heptagons
and no hexagon. The Bravais lattice is face-centered-
cubic with space group Fm3̄. We have fully optimized
the structure of fcc-(C28)2 by computing its equation of
state at zero temperature (energy versus volume). In the
total energy calculations, the integration of the Brillouin
Zone (BZ) have been performed over a 4×4×4 Monkhorst-
Pack [19] mesh corresponding to 8 k-points in the irre-
ducible wedge. The equation of state (Fig. 2) has been
fitted by Murnaghan’s function [20] which gives the lat-
tice parameter and density (a = 14.96 Å, ρ=1.33 g/cm3),
bulk modulus (B = 936 kbar), and derivative of the bulk
modulus with respect to pressure (B′ = 2.36). The cal-
culated cohesive energy at equilibrium is 0.771 eV/atom
lower than that of diamond (the experimental cohesive
energy of diamond is 7.37 eV/atom [21]).

Only three atoms out of 56 in the unit cell are
inequivalent, the other being obtained by symmetry.
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Fig. 2. Equation of state of fcc-(C28)2. The energy zero cor-
responds to the total energy of diamond.
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Fig. 3. Electronic band structure and density of states of the
schwarzite fcc-(C28)2. The zero of energy is the Fermi level.
The density of state is computed with the tetrahedron method
and 35 k-points in the irreducible BZ.

The coordinates in units of a of the inequivalent atoms
labeled A, B and C in Figure 1 are A = (−0.073,
−0.302, −0.232), B = (−0.200, −0.050, −0.050), and C =
(−0.174, −0.115, 0.018). There are four different bonds
in the crystal, corresponding to the segments AB, BC,
BB′ and CC′ in Figure 1. The bond BC is comparatively
short (1.369 Å) whereas the other three (AB = 1.454 Å,
BB′ = 1.498 Å and CC′ = 1.494 Å) are appreciably
longer than the bond length in graphite (1.423 Å). Carbon
schwarzites can be either metallic or insulating, depending
on their atomic geometry [14]. The schwarzite fcc-(C28)2
is metallic as shown by the electronic band structure in
Figure 3.

The density of states (DOS, cf. Fig. 3) shows very
sharp peaks due to the small dispersion of the elec-
tronic bands. The Fermi level (EF ) lies in a pseudo-
gap of the DOS which at EF is as low as N(EF ) =
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Fig. 4. Phonon density of states at the Γ -point of the
schwarzite fcc-(C28)2. The continuous line is obtained by as-
signing a Gaussian with variance of 15 cm−1 to each phonon
frequency.

2.0 states/(eV spin cell). The lowest conduction bands
correspond to pz-states poorly conjugated localized on the
atoms of CC′ ring and on atom A. In particular, the low-
est conduction bands are generated by two states 3-fold
degenerate at Γ . They are occupied by a total number
of four electrons per unit cell. The flatness of the elec-
tronic bands makes possible to restrict the BZ integration
to the Γ -point only, provided that the four conduction
electrons per cell are equally distributed among the low-
est 3-fold degenerate conduction states at Γ (cf. Fig. 3).
In fact, we have verified that the atomic positions do not
change (within 0.005 Å) by optimization of the structure
in the Γ -point approximation. The latter approximation
has then been used (see next section) in the calculation of
phonons and of the electron-phonon coupling.

3.2 Phonons and electron-phonon interaction

The phonons frequencies and the eigenvectors at the
Γ -point have been obtained by diagonalization of the dy-
namical matrix, built from the numerical derivatives of
the forces with respect to finite (0.005 Å) atomic displace-
ments. The phonon density of states at the Γ -point is re-
ported in Figure 4. The frequency and character of the
gerade (g), Raman-active phonons are given in Table 1.
The flatness of the conduction bands at the Fermi level
allows to estimate the electron-phonon coupling poten-
tial λ/N(EF ) in the so-called molecular-approximation,
which amounts to consider flat electronic and phononic
bands, as

λ

N(EF )
=

∑

α

λα

N(EF )

=
∑

α

1
ω2

αs2M

s∑

n,m

| 〈um | εα · ∇Veff | un〉 |2, (1)
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Table 1. The contributions of the Γ -point phonons to the electron-phonon coupling constants λα/N(EF ) for the schwarzite
fcc-(C28)2.

Modes Energy (cm−1) λα/N(0)

fcc-(C28)2 (meV)

Tg(1) 255 1.4

Eg(1) 291 7.1

Tg(2) 314 0.1

Tg(3) 391 0.5

Tg(4) 426 4.9

Tg(5) 489 0.0

Ag(1) 493 0.4

Ag(2) 506 1.8

Eg(2) 527 3.8

Tg(6) 532 1.0

Tg(7) 544 13.8

Tg(8) 600 0.5

Ag(3) 646 0.0

Eg(3) 651 3.1

Tg(9) 653 0.0

Ag(4) 704 3.6

Tg(10) 708 0.3

Tg(11) 727 0.5

Modes Energy (cm−1) λα/N(0)

fcc-(C28)2 (meV)

Tg(12) 753 4.2

Tg(13) 934 3.3

Eg(4) 972 1.2

Ag(5) 1008 0.0

Tg(14) 1036 0.9

Tg(15) 1071 0.9

Eg(5) 1095 1.6

Tg(16) 1128 0.0

Ag(6) 1174 0.1

Tg(17) 1182 0.1

Tg(18) 1241 0.2

Eg(6) 1247 0.5

Tg(19) 1445 0.2

Tg(20) 1454 0.1

Eg(7) 1497 0.0

Tg(21) 1540 0.0

Ag(7) 1560 0.7

Total: 58.3

where εα is the normalized displacement pattern of the
phonon with frequency ωα, M is the atomic mass, un is
the periodic part of the Kohn-Sham states, and ∇Veff is
the derivative of the Kohn-Sham effective potential with
respect to the atomic displacements caused by phonons.
The sum over α and n, m run over the phonons and the s
degenerate electronic states at the Fermi level at the Γ -
point. The change in the effective potential due to the α-th
phonon is computed by finite differences as

εα · ∇Veff = (Veff(r + hεα) − Veff(r − hεα))/2h, (2)

where h = 0.005 Å and r indicate collectively the equi-
librium atomic positions. Only phonons with g character
contribute to the matrix elements in equation (1). The
frequency and partial electron-phonon coupling constants
for each normal mode are reported in Table 1.

The total electron-phonon coupling constant is
λ/N(EF ) = 0.058 eV. The phonon that mostly con-
tributes to λ/N(EF ) is the mode Tg(7) (cf. Tab. 1), whose
displacement pattern is shown in Figure 5. This modes de-
forms the CC′ ring over which the KS states at EF are
mostly localized. The strength of electron-phonon interac-
tion potential in fcc-(C28)2 is comparable to that of C60

fullerite (λ/N(EF ) ∼ 0.07 eV in C3−
60 ) [2,8], but it is sub-

stantially lower than in a C20-based solid e.g., the fcc-C22

crystal of reference [8], although the C20 cluster has an ab-
solute Gaussian curvature similar to that of schwarzite fcc-
(C28)2. The schwarzite element C28 is actually the coun-
terpart of C20 with heptagons replaced by pentagons. In
this respect, we note that the large electron-phonon cou-
pling in the C20-based solid, fcc-C22, is due to the phonon-

Fig. 5. Displacement pattern of the mode which gives
the largest contribution to the electron-phonon coupling (see
Tab. 1).

induced modulation of the antibonding π-states in the
short C=C ethylenic bonds, which have however a large
σ-character [8]. Conversely, in fcc-(C28)2 the states at the
Fermi level are nearly pz-states with a low σ-character and
are poorly conjugated.

From the calculated value of λ/N(EF ) and N(EF ) we
obtain λ=0.116. This value is quite low, but it could be
increased by up to a factor five by increasing N(EF ) via
doping with alkali metals. The latter ions could presum-
ably sit in the large voids of the schwarzite structure, they
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Fig. 6. (a) Basic unit of schwarzite fcc-(C64)2 made of two elements (128 atoms). (b) Conventional unit cell of fcc-(C64)2 with
four formula units seen along the [110] and (c) [111] directions.

would get ionized and move the Fermi level at higher en-
ergy with a consequent increase of N(EF ) (cf. Fig. 3).

4 The schwarzite fcc-(C64)2

4.1 Structural and electronic properties

Negative curvature can be introduced in a D-type
schwarzite by octagons instead of heptagons as in
fcc-(C28)2. The smallest schwarzite of the octagonal se-
ries has six octagons and 16 atoms in the elemental
unit. Placing this unit on a diamond lattice gives rise
to the schwarzite fcc-(C16)2. Starting from the smallest
schwarzite of this series, it is possible to make the struc-
ture bigger by inserting hexagons in such a way as to pre-
serve the tetrahedral symmetry of the elemental unit. This
is achieved by inserting hexagons in the planes perpen-
dicular to the three-fold axis along the {111} directions.
Adding one hexagon per axis one obtains the polybenzene
structure studied by M. O’Keeffe et al. [12].

Adding three hexagons, one obtains the schwarzite
fcc-(C64)2 shown in Figure 6. There are 64 atoms per el-
emental unit and 128 atoms per unit cell. As for the first
element of this series, the space group is Fd3̄m. Only five
atoms are inequivalent, the other being obtained by sym-
metry operations.

Due to the larger size of the schwarzite fcc-(C64)2,
its equation of state has been computed within the
tight-binding scheme of reference [13] which has been
demonstrated to reproduce the equilibrium density of
several carbon-based materials including the schwarzite
fcc-(C28)2 (the latter within 0.1%). The resulting equilib-
rium density and lattice parameter are ρ = 1.19 g/cm3

and a = 20.45 Å. Starting from this structure we have
optimized the system at fixed volume within the ab initio
framework. A 2 × 2 × 2 MP mesh [19] has been used in
the BZ integration. Residual forces at equilibrium are less
than 6 mRy/bohr. Hermite-Gaussian broadening of order
one with spreading of 0.04 Ry has been used to deal with
metallic systems [22]. The optimized positions (ab initio)
of the five inequivalent atoms in unit of a are (cf.
Fig. 6) A = (−0.2114, −0.2114, −0.2114), B = (−0.1797,
−0.1797, −0.2651), C = (−0.2774, −0.2774, −0.1123),
D = (−0.1245, −0.2106, −0.2937), and E = (−0.1811,
−0.0688, −0.3250).

The bond lengths are all very similar ranging from
1.418 Å to 1.439 Å, close to the value of the bondlenghth
in graphite. The cohesive energy is 0.42 eV/atom lower
than that of diamond or 0.351 eV/atom higher than that
of the smaller schwarzite fcc-(C28)2, as expected due to
the presence of hexagons.

The electronic band structure of fcc-(C64)2 is reported
in Figure 7. The system is a metal and the bandwidth
of the lowest conduction bands is smaller than 1 eV.
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Fig. 7. Bands structure around the Fermi level of schwarzite
fcc-(C64)2. The zero of energy is the Fermi level.

As for fcc-(C28)2, we have checked that the structure of
fcc-(C64)2 does not change by restricting the BZ integra-
tion to the Γ -point only and equally distributing the con-
duction electrons (two per cell) on the 2-fold degenerate
state of the lowest conduction band at Γ (cf. Fig. 7).

4.2 Phonons and electron-phonon interaction

The phonon frequencies at the Γ -point and the electron-
phonon interaction potential in the molecular-like approx-
imation (cf. Eq. (1)) have been computed as described for
fcc-(C28)2 (Sect. 3). The phonon density of states at the
Γ -point of fcc-(C64)2 is shown in Figure 8.

The total electron-phonon interaction potential of
schwarzite fcc-(C64)2 is λ/N(EF ) = 0.015 eV. As ex-
pected, this value is much lower than the corresponding
value in the smaller schwarzite fcc-(C28)2, since the inser-
tion of hexagons reduces the local curvature. Moreover the
presence of octagons, which unlike heptagons in fcc-(C28)2
have an even number of edges, increases the π-conjugation
and make all the bond lengths very similar. In fcc-(C64)2
there are no short ethylenic-like bonds as in fcc-(C28)2.

5 Discussion and conclusions

In summary, we have reported on the first calculation
of the electron-phonon interaction in carbon schwarzites.
We have considered two examples of periodic scharzites
of D-type: the smallest schwarzite of the series with hep-
tagons, fcc-(C28)2, and the schwarzite of the series with oc-
tagons which contains 24 additional hexagons per elemen-
tal unit, fcc-(C64)2. Both schwarzites have face-centered-
cubic symmetry and are metallic. The dispersion of the
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Fig. 8. Phonon density of states of schwarzite fcc-(C64)2, from
the Γ -point phonons only. The DOS is obtained by assigning a
Gaussian with variance of 15 cm−1 to each phonon frequency.

lowest conduction bands is low for both structures and the
calculated electron-phonon interaction potential λ/N(EF )
in the molecular-like approximation is 58 meV and 15 meV
for the smaller and larger schwarzites, respectively. From
these results we can conclude that also for the graphenic
structure with negative curvature the same rule demon-
strated for fullerenes holds, i.e. a large enhancement of
the electron-phonon coupling can be obtained by increas-
ing the absolute curvature. The value of λ/N(EF ) for the
smaller schwarzite is similar to that of C60 fullerite, but
the electronic density of states is low, which finally yields
λ = 0.116, a much lower value than in alkali doped C60.
However, N(EF ) could be made larger by doping fcc-
(C28)2 with alkali metals. We note that λ/N(EF ) is much
lower in fcc-(C28)2 than in a C20-based solid (0.27 eV for
the fcc-C22 crystal of Ref. [8]), although the C20 cluster
has a curvature similar to fcc-(C28)2, albeit of opposite
sign. This is due to the weaker σ-character of the lowest
conduction bands which contribute to the electron-phonon
coupling in schwarzites. Schwarzites thus seem less attrac-
tive as potential superconductors than small fullerenes.

This work is partially supported by the INFM Parallel Com-
puting Initiative, and by MURST through project PRIN01-
2001021133.
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